.

6

Spatial and annual variation in fecundity and oocyte atresia of yellowtail

flounder, Limanda ferruginea, in U.S. waters

[^0]Keywords: fecundity; atresia; stereology; down-regulation; geographic variation; condition

Abstract

Potential annual fecundity (PAF) was estimated over three years (2010-2012) for yellowtail flounder with individuals from the three stocks off the northeast U.S. coast. Down-regulation of PAF, the resorption of oocytes during development, was evident as the vitellogenic cohort advanced, so we directly measured atresia of vitellogenic oocytes using stereological techniques. PAF models including relative fish condition, stock area, year, and oocyte diameter of the leading cohort explained more variation than models with just size alone based on Akaike information criteria. In a given year, Gulf of Maine females had lower PAF at size than southern New England females. Interannual differences were evident: PAF of both stocks was higher in 2010 and lower in 2012, with 2011 showing less synchronization between these stocks. Differences in size at age and relative condition suggested that energy available for somatic and reproductive growth was lower in some years in the Gulf of Maine and Georges Bank, especially 2011. Georges Bank PAF and condition were intermediate to the other stocks or more similar to the Gulf of Maine, varying annually. A latitudinal gradient in PAF is evident based on our results and relative to earlier studies that included Canadian stocks. The magnitude of down-regulation was variable across stocks and typically 3-25\% of PAF. This can be accounted for in fecundity estimates, by the seasonal schedule of sampling and use of an oocyte diameter term in the fecundity model. Theoretical models of atresia patterns suggested variable rates over the later portion of clutch development. The timing of down-regulation varied among years, and its intensity was influenced by female relative condition. Fecundity was related to fish size, but was also affected by fish condition and oocyte diameter (a proxy for time until spawning), and spatial

 and temporal effects. A longer time series of PAF may identify environmental drivers that modulate annual stock reproductive potential.
1.0 Introduction

Spawning stock biomass (SSB) is commonly used in fisheries assessments as a proxy for reproductive potential (Saborido-Rey and Trippel, 2013). SSB is generally favored as a proxy because it is relatively easy to calculate from estimates of abundance at age and maturity at age. Given the inherent difficulties in predicting recruitment from SSB, alternative measures of reproductive potential have been proposed (Marshall et al., 2003; Morgan, 2008; Fitzhugh et al., 2012). Direct measures of egg production may be more representative of a stock's reproductive potential because egg production is highly variable; as it is dependent upon dynamic life-history parameters such as maturity, growth, sex ratio, and fecundity, which are all influenced by a fluctuating environment (Rideout and Morgan, 2007; Stares et al., 2007; Lambert, 2013). Alternative measures of reproductive potential can be more responsive to changes in stock demographics and environmental conditions, thereby providing more information to annual stock reproductive potential and subsequent year class strength than biomass metrics alone (Marteinsdottir and Thorarinsson, 1998; Rideout and Morgan, 2010; Lambert, 2013).

Incorporating fecundity and other proxies of reproductive potential into stock assessment models can affect reference points and may improve predictions of year class strength (Morgan et al., 2009; Morgan et al., 2011; Brooks, 2013). Attempts to investigate reproductive potential in an assessment context continue to be constrained by the lack of available data, particularly in the western North Atlantic Ocean where limited stock-specific fecundity data is available (Trippel, 1999; Tomkiewicz et al., 2003). Yellowtail flounder, Limanda ferruginea, exemplifies this paucity of data, with few published annual fecundity estimates that are limited in time, geographic scale, or both (Pitt, 1971; Howell and Kesler, 1977; Rideout and Morgan, 2007).

Furthermore, of the three stocks in United States waters, annual fecundity has only been estimated for the southern New England stock (Howell and Kesler, 1977).

Oocyte development in yellowtail flounder is group synchronous (Howell and Kesler 1977; Howell, 1983) with a distinct cohort of maturing (secondary growth) oocytes leading up to spawning, hence fecundity is determinate. The estimation of the number of oocytes in this maturing cohort - referred to here as the potential annual fecundity (PAF) - can be partially automated by image analysis systems, using the autodiametric method (Thorsen and Kjesbu, 2001; Witthames et al., 2009; Ganias et al., 2014). The autodiametric method estimates oocyte density (number of oocytes / g ovary, NG) from the mean diameter of secondary growth oocytes (i.e. the developing cohort), facilitating measurement of fecundity, but has not yet been applied to yellowtail flounder, so we determined this relationship.

Many fish 'fine-tune' their annual fecundity as the clutch develops. Therefore, estimates of PAF should be measured as close as possible, but prior, to spawning so that PAF estimates are considered the best approximation of realized annual fecundity (RAF; Murua et al., 2003; Ganias et al., 2014), defined as the actual number of eggs released. Differences between PAF and RAF can arise when atresia of developing oocytes reduces the standing crop of secondary-growth oocytes (termed down-regulation) or when the entire clutch, or portions of, is not released, evidenced by residual eggs in the spent ovary (Kurita et al., 2003; Murua et al., 2003). Both atresia and residual eggs have been noted in yellowtail flounder (Howell, 1983; Zamarro, 1991); hence, we sought to quantify annual rates of atresia using a Weibel grid stereological procedure (Weibel et al., 1966; Weibel, 1979; Sterio, 1984), as applied to fecundity analysis (Emerson et al., 1990; Andersen, 2003).

In this study we estimated female yellowtail flounder fecundity during three spawning seasons, 2010-2012, among the three stocks in U.S. waters: Gulf of Maine (GOM), Georges Bank (GB), and Southern New England-Middle Atlantic (referred herein simply as SNE, the only sub-region we obtained samples from). The Georges Bank stock is a shared stock with Canada, and only the U.S. portion of the stock was sampled. Determination of both fecundity and atresia allowed us to assess the scale, timing, and spatiotemporal variation in downregulation during the development of the annual clutch. Data on the reproductive output of yellowtail flounder are especially relevant in light of the current low levels of biomass and recruitment in the SNE and GB stocks (NEFSC, 2012a, 2012b; Legault et al., 2013).

2.0 Methods

Yellowtail flounder were sampled monthly from January 2010 through June 2011, and in 2012 sampling was narrowed to just the three months prior to peak spawning for each stock. Fish were collected primarily by commercial fishing vessels participating in the Northeast Fisheries Science Center, Northeast Cooperative Research Program's (NEFSC-NCRP) Study Fleet ($n=$ 310 females) and from other NEFSC-NCRP research studies ($n=56$). Fishermen were paid to provide a subset of 30-40 random fish distributed over the size range captured, and depending on the catch volume this was typically from one or two hauls. The fishermen tracked which haul the fish were from, along with the location and time of the haul, using electronic fisheries logbook software used for catch reporting. To ensure a high quality of the tissues, fish were requested from the last day (or tows) of a fishing trip, iced during transport, and processed upon arrival at the laboratory. Supplemental samples were acquired from the Massachusetts Division of Marine Fisheries trawl survey ($n=21$) and NEFSC bottom trawl survey ($n=23$). Two fish per 1 cm bin
were randomly selected on the NEFSC survey, and all developing fish observed on a tow were selected for the MADMF survey. Both surveys have a random stratified survey design. Fish were obtained from core areas of abundance, and the sizes were representative for all three stock areas in United States' waters (Fig. 1; Table 1). Fish total length (TL, mm), body mass ($\mathrm{M}_{\mathrm{b}}, \pm 0.1 \mathrm{~g}$), and ovarian mass $\left(\mathrm{M}_{0}, \underline{0} 0.001 \mathrm{~g}\right)$ were measured, and an approximately $1 \mathrm{~cm}^{3}$ piece of tissue from the middle of the right ovarian lobe was fixed in 10% neutral-buffered formalin. A few fish were sampled while at sea ($\mathrm{TL} \pm 0.5 \mathrm{~cm}, \mathrm{M}_{\mathrm{b}}$ and $\mathrm{M}_{\mathrm{o}} \pm 0.001 \mathrm{~kg}, n=44$).

Age was determined for each fish by counting annuli on scale impressions following methods developed at the NEFSC, which are used in the three stock assessments (NEFSC, 2012a, 2012b; Legault et al., 2013). Specifically, about 5 or 6 scales from the eyed side along the lateral line were impressed on a laminated plastic slide using a roller press and viewed on a microprojector at a magnification of 52X with transmitted light (Penttila \& Dery 1988). Details on ageing methods and quality control/quality assurance procedures and results are available at http://www.nefsc.noaa.gov/fbp/.

2.1 Relative condition

Relative condition $\left(\mathrm{K}_{\mathrm{n}}\right)$ was calculated as the ratio of the observed mass over the predicted body mass (Le Cren, 1951) using an overall length-mass equation determined from all females sampled for fecundity. This was calculated using a log-transformed least squares regression: $\mathrm{LN}\left(\mathrm{M}_{\mathrm{ofb}}\right)=-11.364+2.934 \mathrm{LN}(\mathrm{TL}),\left(n=410\right.$, $\mathrm{SE} a=0.271, \mathrm{SE} b=0.046, r^{2}=$ 0.91). Ovary-free body mass $\mathrm{M}_{\mathrm{ofb}}$ was used to examine changes in condition independent of ovarian development. Differences in K_{n} among stocks and years were tested by ANOVA with a

Tukey HSD post-hoc test if overall significant differences were found. This and all subsequent statistical analyses were performed using R version 3.0.1 (R Development Core Team, 2013) ${ }^{1}$.

2.2 Histology

The fixed ovarian tissue was processed with standard histological methods to assess microscopic characteristics of fish gonads. Samples were embedded in paraffin blocks, thin sectioned, and stained with Schiffs-Mallory trichrome (SMT). The most advanced oocyte stage (MAOS), the presence of postovulatory follicles, and the occurrence and stage of atresia were assessed for each histology section. The MAOS scheme was adapted from previous studies of this species (Howell, 1983; Zamarro, 1991) and Lowerre-Barbieri et al. (2011), which includes the following classifications; primary growth (all oocyte stages prior to cortical alveolar), cortical alveolar, early vitellogenic (partially yolked), late vitellogenic (fully yoked), germinal vesicle migration, germinal vesicle breakdown, hydration, and ovulation. Fecundity analysis included only females with a MAOS in late vitellogenesis or germinal vesicle migration. Females were excluded if there were signs of spawning activity (germinal vesicle breakdown, hydrated oocytes, or postovulatory follicles) or any indications of significant cell damage (e.g., due to freezing, which occasionally occurred during transit to the laboratory).

Atresia was classified as either α or β atresia based on criteria adapted from Hunter and Macewicz (1985) and Witthames and Greer Walker (1995). The α stage was first evident by distortion and fissures in the zona pelucida (Fig. 2). As the α stage progressed the zona pelucida fragmented and collapsed toward the center of the cell, the germinal vesicle disintegrated, and yolk globules disappeared as they were phagocytized and the oocyte became vacuolated in

[^1]appearance. The α stage was considered complete when the zona pelucida and distinct yolk globules were no longer evident. The β stage was more compact and irregular in shape with numerous vacuoles that were either empty or contained particles of the phagocytized material.

2.3 Fecundity determination

Direct gravimetric measurements of oocyte density were made from subsamples of the fixed ovarian tissue, without any tunica tissue (gonad wall), that were patted dry, and weighed (\pm 0.0001 g). A subsample of $300-400$ oocytes was targeted to balance sample size with processing time. Subsamples were manipulated with probes to separate the individual oocytes into a single layer, and images were taken with transmitted light using a dissecting scope and digital camera (1.5X). ImageJ software ${ }^{2}$ (v. 1.46r, National Institute of Health) and the ObjectJ (v. 1.02k, University of Amsterdam) plugin were used for image processing. All images were evaluated on a qualitative scale $(\operatorname{good}=1$, adequate $=2$, poor $=3)$, which were graded based on the clarity of images, amount of oocytes damaged from processing, and quantity of connective tissue clinging to oocytes. Samples with poor quality (3) were excluded from subsequent analyses, and a new subsample was processed $(n=4)$. Analysis of images was made consistent between samples by use of a macro in ObjectJ, modified from one developed for Atlantic mackerel, Scomber scombrus (Dr. Anders Thorsen, Institute of Marine Research, Bergen, Norway, pers. comm.). The macro automatically filtered the images and measured the oocyte diameters. Subsequent inspection of the processed image allowed correction of erroneously identified and measured particles (e.g., connective tissue, or oocytes adhering to each other but not identified as separate objects). To avoid potential size bias, the diameters of oocytes damaged during sample

[^2]processing were not included in the estimation of the mean, but the number of damaged cells was included in the total oocyte count for the subsample (number of oocytes/g of ovary, NG) in gravimetric subsamples. These gravimetric estimates were used to determine the autodiametric relationship between mean oocyte diameter and oocyte density, and oocyte density was estimated for all subsequent fish using their mean oocyte diameter.

To ensure individual fish were at an appropriate development stage for fecundity analysis, the size distribution of measured oocytes for each fish was assessed with the following two criteria to remove individuals too early in development. These criteria also reduced the impact of stock differences in spawning seasonality. The first criteria verified that the vitellogenic cohort of oocytes for the imminent spawning season had achieved a clear hiatus from the reservoir of smaller primary growth oocytes, from which subsequent cohorts would emerge in future years. Specifically, if > 5\% of the measured vitellogenic oocytes had an oocyte diameter that was smaller than $250 \mu \mathrm{~m}$, then the individual was excluded (see electronic supplementary materials Fig. S.1). The second threshold confirmed the leading cohort (largest 10% of oocytes) had reached a minimum size threshold of development. Specifically, individuals with a leading cohort < $375 \mu \mathrm{~m}$ were considered too early in development and excluded. These thresholds were determined by examination of oocyte length-frequency distributions and ovarian histology, which identified the size break between partially and fully vitellogenic ($\sim 250 \mu \mathrm{~m}$) oocytes and those approaching the end of vitellogenesis ($\sim 375 \mu \mathrm{~m}$) but prior to germinal vessel migration.

To confirm that samples from a single ovarian location were representative of the entire ovary, we measured oocyte density and mean oocyte diameter for samples from multiple gonad locations within and between ovarian lobes for 10 females. For these individuals, six samples of
tissue were taken, one each from the anterior, middle, and posterior of each ovarian lobe and processed as described above. To account for individual differences in developmental stage among fish, a mixed model with individual fish as the random effect was used to evaluate whether the two response variables differed among the six ovary locations (McElroy et al., 2013; used lme function of the nlme package in R). Although there was significant variation in oocyte diameter among fish (the random effect), no significant difference in oocyte diameter ($\mathrm{DF}=45$, $\left.p^{\prime} s=0.24-0.82\right)$ or oocyte density $\left(\mathrm{DF}=45, p^{\prime} s=0.17-0.60\right)$ was detected between samples from the same individual (see electronic supplementary materials Fig. S.2). Therefore, a sample from one location, generally the middle of the dorsal lobe, was considered representative of the entire ovary.

The autodiametric relationship, oocyte density (NG) as a function of the mean oocyte diameter (OD), was modeled with both power and exponential functions using least-squares regression. The best model was selected using second order Akaike information criterion, AICc (Anderson, 2008; AICctab function from bbmle package in R). The power model fit the data better than the exponential model $(n=178, \Delta \mathrm{AICc}=6.3)$. The fitted equation used for determination of the oocyte density based on the gravimetric samples was $\mathrm{NG}=\left(5.919 \times 10^{10}\right)$ ($\mathrm{OD}{ }^{-2.446}$); subsequently, (see electronic supplementary materials Fig. S.3; $n=178$, SE $a=$ 3.033×10^{10}, SE $b=0.086 ;$ OD range $\left.=324-514 \mu \mathrm{~m}\right)$ this model was used to calculate the oocyte density for the additional 232 females (OD range $=324-509 \mu \mathrm{~m})$ used in all the following analyses.

When scaling up the oocyte density (NG) of the subsample to estimate the fecundity of a whole fish; we adjusted for the tunica's contribution to the whole ovarian mass $\left(\mathrm{M}_{0}\right)$. To do so, the tunica weight was determined by weighing the whole wet ovary initially and then stripped of
all oocytes. Tunica mass expressed as a percentage of whole ovarian mass $(4.721 \%, n=57, \mathrm{SE}=$ 0.169) was used to adjust M_{o} for calculation of PAF as follows: $\mathrm{PAF}=\mathrm{NG}\left(0.9528 \mathrm{M}_{\mathrm{o}}\right)$, where NG (oocytes $/ \mathrm{g}$) was either measured gravimetrically or calculated with the autodiametric curve.

2.4 Fecundity modeling

We modeled PAF as a function of fish size (TL) or age (FA) by: $\ln (\mathrm{PAF})=\beta_{l} \ln (\mathrm{TL}$ or FA) $+\alpha$, where α and β_{l} are coefficients determined by least-squares fit regression. Fish TL was used as the measure of fish size as the total mass of fish is dynamic leading up to spawning. Total fish mass increases as the annual clutch develops due to the gonad weight increasing, but gonad-free fish mass concurrently declines as fish deplete somatic energy reserves. Since fish were sampled over a relatively broad period leading up to spawning, TL was chosen to describe fish size as it is more stable. Age models were tested and age-PAF relationships were reported, but model analysis was only presented for length as it related more strongly to PAF. Model selection evaluated the inclusion of stock and year as factors, and relative condition $\left(\mathrm{K}_{\mathrm{n}}\right)$ and mean oocyte diameter of the leading cohort $\left(\mathrm{OD}_{\mathrm{LC}}\right)$ as continuous variables. Models including all combinations of main effects were evaluated - from simple individual predictor models to a model with all main effects combined - using AICc criteria (using dredge function in the MuMIn package of R). Interaction terms were also evaluated, but most produced little improvement over models with main effects only ($\triangle \mathrm{AICc}<2$). Parsimony lead us to avoid tabulating statistics of all models with interaction terms, except for models with stock:year and stock:age interactions. Since the AIC approach can select the best among even poor models, the coefficient of determination $\left(r^{2}\right)$ was also calculated to evaluate model fit.

The numbers and lengths of fish sampled varied among stocks, and to a lesser degree years (Table 1). The differences in size among stocks reflected established patterns in growth, but also the variable nature of the maximum and minimum lengths encountered. Variation in numbers of fish collected was influenced by seasonal fishing patterns and available quota for the participating fishermen. In particular, samples from the GB stock were excluded from most analyses due to low sample size and a narrow length range. Therefore, PAF model testing was limited to a range of lengths that overlapped for females sampled from the SNE and GOM stocks in all years, rounded to the nearest $\mathrm{cm}(33-45 \mathrm{~cm} \mathrm{TL}[n=338])$. Two fish collected in the month of December were grouped with the subsequent calendar year in which they would have spawned. The form of the final reported PAF regressions was determined based on the model testing, and slopes of the final regressions were tested against an isometric slope ($\beta_{I}=3$ for length, $\beta_{l}=1$ for age) using a Wald test.

2.5 Down-regulation analyses

Two complimentary approaches (across and within individuals) were used to quantify the magnitude of down-regulation of fecundity for the stocks studied. First, we inspected trends in PAF over the period of the oocyte development cycle covered by all fish sampled for fecundity (population level, across point estimates from individuals) as an indirect measure of downregulation. Second, for a subset of individuals we assessed combined (alpha and beta) vitellogenic atresia at the individual level using stereological methods to directly quantify the percentage of atretic oocytes present.

2.5.1 Down-regulation via PAF estimates

The relationship between PAF estimates and mean leading cohort diameter, OD $_{\text {LC }}$ (a proxy for time to spawning) was used to evaluate if fecundity estimates declined as spawning approached (i.e. down-regulation). Stock- and year-specific regressions were used to generate length-based residuals for PAF estimates (all years combined for GB regression), which were standardized to predicted PAF (pPAF). K_{n} was included in the models for determining pPAF, but mean $O D_{\mathrm{LC}}$ was not included to maintain independence in the subsequent regression analysis relative to $\mathrm{OD}_{\mathrm{LC}}$. Ten fish were omitted from the regressions because they had rare lengths (TL < 300 mm or TL > 500 mm) or ages (2 years). The linear regression of the standardized PAFresiduals against mean $O D_{\mathrm{LC}}$ was then tested to determine if the slope differed from zero (no down-regulation).

2.5.2 Down-regulation via stereological estimates

A subset of fish was selected from the fecundity samples for direct estimation of atresia using stereological analysis of ovarian histology. We adapted methods developed by Weibel et al. (1966) and Sterio (1984), and as applied to fish reproduction by Emerson et al. (1990) and Andersen (2003) to quantify the relative intensity of atresia of secondary-growth oocytes. This method provides unbiased estimates of volume fraction of different cell types from two dimensional cross sections. Fish were randomly selected from $50 \mu \mathrm{~m}$ intervals (<350, 350-400, $400-450,>450 \mu \mathrm{~m}$ mean oocyte diameter) as sample availability allowed ($n=27,51,44,42$; respectively), while maintaining a balanced representation across stock and year ($n=20$ per year for GOM and SNE; but only $n=9,17$, and 18 were available for GB in 2010-2012). Serial, nonoverlapping images were captured from one histology section (per fish) at 4 X magnification on a compound microscope. A $0.1815 \mathrm{~cm} \times 0.1312 \mathrm{~cm}$ grid, containing 120 sampling points (Fig. 2;

Weibel 1979; Sterio 1984; Andersen 2003), was overlaid on each image using the Weibel grid macro in ObjectJ (see section 2.2).

The number of sampling points hitting each cell type (vitellogenic oocytes, α and β stages of atresia) and total number of cells transected by the grid were enumerated for each image. If cells were found entirely within the borders of the grid or crossed the top and right 'allowed' borders (Fig. 2) they were counted; cells outside the grid or crossing the 'forbidden' (left or bottom) borders were not counted. White space in the images was recorded as negative sampling points, and excluded from the calculations of volume fraction (below). Similarly, tunica tissue was recorded and excluded from the calculations as it was not included in fecundity subsamples. The number of images used for each fish depended on the size of the histology section, which varied with the stage of ovarian development. Therefore, a target was set at 300 vitellogenic oocytes (mean $=315$ oocytes), and fish with less than 200 transections were excluded from the analysis.

The count data from the two dimensional histology micrographs was converted to a three dimensional estimate of density (N_{v}, number per unit volume) by the following equation for the $i^{\text {th }}$ cell type (vitellogenic [$N_{v v}$], α-atretic [$N_{v a]}$, or β-atretic [$\left.N_{v \beta}\right]$):

Eq. $1 \quad N_{v i}=\frac{K \cdot N}{\beta \cdot V^{0 .}}$,
where $N_{a i}$ is the number of oocytes per unit area for cell type i, V_{i} is the volume fraction occupied by cell type i, β is a shape coefficient, and K is a size distribution coefficient (Weibel et al., 1966). $N_{a i}$ was calculated as the number of oocyte profiles transected per unit area for each cell type. The grid area $\left(0.0238 \mathrm{~cm}^{2}\right)$ was multiplied by the number of images $\left(\mathrm{N}_{\mathrm{m}}\right)$ for each fish to get the total area sampled. For each fish, V_{i} was determined for each cell type using:

Eq. $2 \quad V_{i}=\frac{\sum_{m=P_{m}}^{n}}{\left(120 \cdot \mathrm{~N}_{\mathrm{m}}-P_{n}\right)}$,
where $P_{i m}$ is the number of sampling points hitting cell type i in the $m^{\text {th }}$ image, 120 is the total number of sampling points per grid, and P_{n} is the total number of negative sampling (and tunica) points observed for that fish.

The coefficients β and K were determined from diameter measurements taken from the histology for a subset of 20 fish, from which 50 vitellogenic oocytes per fish (total $n=1000$ oocytes) were measured and as many $\alpha-(n=269)$ and β-atretic ($n=273$) oocytes as were available. Different coefficient values were used for each cell type since vitellogenic oocytes were relatively spherical in shape, but α and β atresia were more irregular in shape and varied dependent on the amount of cellular breakdown that had occurred. The coefficient β was calculated as the ratio of the longest to the shortest axis for each cell type (Weibel and Gomez, 1962; Emerson et al., 1990). A value of $\beta_{v}=1.3091$ was determined for use with vitellogenic cells, and higher values of $\beta_{\alpha}=2.0440$ and $\beta_{\beta}=2.5058$ were determined for the α - and β-atretic oocytes, respectively. K was determined using the equation: $K=\left(\mathrm{M}_{3} / \mathrm{M}_{1}\right)^{1.5}$, where M_{1} and M_{3} are the first and third moment of the size distribution (Weibel et al., 1966). The cell specific values of K were: 1.0113 for vitellogenic cells, 1.1133 and 1.1468 for α and β atresia, respectively.

The relative intensity of atresia was estimated as a percentage of total secondary growth oocytes for $\alpha\left(\% \mathrm{~A}_{\alpha}\right)$ and β atresia $\left(\% \mathrm{~A}_{\beta}\right)$ separately and for combined atresia $\left(\% \mathrm{~A}_{c}\right)$ as follows: $\% \mathrm{~A}_{\mathrm{c}}=100\left(N_{v \alpha}+N_{v \beta}\right) /\left(N_{v v}+N_{v \alpha}+N_{v \beta}\right)$. The $\% \mathrm{~A}_{\mathrm{c}}$ was compared using simple linear regression to both mean $\mathrm{OD}_{\mathrm{LC}}$ and K_{n}. Differences in K_{n} between stock-year combinations, excluding GB (due to low sample size), were tested using ANOVA on the arcsine square-root transformed proportion A_{c}.
2.5.3 Theoretical down-regulation models

In an effort to explore the ramifications of the observed point estimates of downregulation, we developed theoretical models of atretic down-regulation patterns for yellowtail flounder over the oocyte development period, i.e. the measured $\mathrm{OD}_{\mathrm{LC}}$ range. Several theoretical patterns of down-regulation were considered, a low and steady rate (constant 2% atresia), a single acute event (one brief period of 10% atresia), an episodic pattern (two periods of 2% and one of 5% atresia), and a variable rate (longer periods of $0-3 \%$ and episodic $4-7 \%$ atresia). Probability density functions (PDF) were applied to each potential model and scaled to the observed distribution of relative fecundity for yellowtail flounder. Relative fecundity (oocytes / g of gonad-free female) was used to control for the effect of female size, and one extreme relative fecundity value (>7.6) was excluded to facilitate comparison among the theoretical models.

3.0 Results

3.1 Fecundity modeling

AICc values indicated length was the best single predictor model for PAF (Table 2a), explaining 62% of the variation in PAF. Adding other predictors was found to improve the model, and the model with the lowest AICc included all five main effects and the one interaction term (Table 2b). All potential combinations of main effects and the one interaction were tested, but for simplicity only the best models for each number of parameters are shown. The best two parameter model added K_{n} to TL, increasing the explanatory power to 71%. Additional parameters increased the explanatory power of the model incrementally, with the final model explaining 80% of the variation in PAF.

The increase in PAF in relation to length had significant positive allometry for both SNE and GOM females $\left(\beta_{1}>3\right)$, for stock specific regressions of all years combined (Table 3; Fig. 3). This was not the case for the GB females sampled, which was likely an artifact of the low data density over the length range. Fecundity at age exhibited greater variation than fecundity at length (Table 3). The increase in PAF in relation to age was significantly lower than the null slope $($ slope $=1)$ for GOM females, but not so for individuals from SNE indicating slower increases in PAF with age in GOM compared to SNE. The interannual and stock differences in PAF models at age were consistent with the patterns in length at age among years and stocks (Fig. 4).

Model estimates of PAF at length or age were higher for females from SNE than those from the GOM within all years (Fig. 4). Graphical comparisons of estimates were standardized by setting relative condition at 1.0 ('average condition') and the leading cohort diameter at 500 $\mu \mathrm{m}$. Comparison across years of the individual data points indicated substantial overlap among the stocks (Fig. 3). This overlap was particularly evident in 2010, the year with the highest PAF estimates for GOM females, which were comparable with the estimates in the lowest year for SNE females, 2012 (Fig. 4). Trends in PAF were synchronized across stocks in two of the years, with both GOM and SNE exhibiting high PAF in 2010 and low PAF in 2012. However, in 2011, PAF estimates were not synchronized as the PAF estimates of SNE fish were high, similar to 2010 SNE fish; whereas GOM 2011 estimates were low, similar to 2012 GOM fish. The explained variation $\left(r^{2}\right)$ in PAF was also higher for all the SNE regressions relative to the GOM models, for both length and age (Table 3). Among years the model estimates of GOM fecundity at both length and age also exhibited greater variation than SNE PAF (Fig. 4a, b).

The sample size and length range of fish from GB were too low to include in the model analysis (Table 3; Fig. 3), but the patterns in the available data suggested fecundity of this third stock was intermediate to the other two stocks or closer to the lower values observed in GOM, differing annually. The low fecundity estimates for GB fish in 2011 corresponded with the very low values of relative condition observed for GB fish in 2011 (Fig. 5). Condition of GB females had the highest slope relative to fecundity of any stock (Table 3). These results for GB females are tentative, drawn from highly variable estimates of PAF, and a narrow size range of fish sampled.

3.2 Relative condition

Relative condition varied significantly overall among stocks and years for the SNE and GOM stocks (Fig. 5; $F=9.746, n=356, p<0.01$), and contributed to explaining variation in the length-PAF models (Table 2). In post-hoc testing, the K_{n} of females for two stock-year combinations were significant (Tukey HSD, $p<0.05$). The K_{n} for SNE in 2011 was significantly greater than the K_{n} for GOM in all years. The K_{n} for GOM in 2011 was significantly lower than all other stock-year combinations. Relative condition had a significant positive, but weak, relationship to standardized PAF residuals (Fig. 6a; slope $=99.77, n=400, r^{2}=0.13, p<0.01$). PAF residuals were determined with stock-year specific regressions (except GB which was all years combined) with a mean $\mathrm{OD}_{\mathrm{LC}}$ term. Individuals with very high or low condition were associated with higher or lower fecundity than expected at a given length. The particularly low K_{n} for GOM fish sampled in 2011 was associated with low PAF, and high condition of SNE fish in 2011 with higher fecundity (Fig. 4, 5). However, at a stock level, condition was not always directly predictive of variation in fecundity for a given year (i.e. 2012 fecundity and condition).

3.3 Down-regulation of fecundity

Results from the two independent approaches indicated low levels of down-regulation occurred during the sampling period. All $\mathrm{OD}_{\mathrm{LC}}$ regression terms in the PAF models had negative slopes - except SNE in 2010 FA model (Table 3), an indirect indicator of down-regulation, which were consistent with the decline in standardized PAF residuals as mean $\mathrm{OD}_{\mathrm{LC}}$ increased (Fig. 6b). The declining slope of the regression for PAF residuals with $\mathrm{OD}_{\mathrm{LC}}$ was significant $\left(\right.$ slope $\left.=-0.103, n=400, r^{2}=0.04, p<0.01\right)$, but the strength of the relationship was extremely weak. To examine interannual patterns in down-regulation, stock-year specific PAF regressions were used, and PAF for a given length (400 mm) and condition $\left(\mathrm{K}_{\mathrm{n}}=1\right)$ was predicted at two $\mathrm{OD}_{\mathrm{LC}}$'s within the range examined. Predicted PAF declined from 3-25\% as the mean $\mathrm{OD}_{\mathrm{LC}}$ advanced from 400 to $500 \mu \mathrm{~m}$ for all stocks and years (Table 4). Higher rates of down-regulation were observed for GOM (8-25\%) than SNE (3-13\%) and GB (8\%) females, and rates were highest for GOM and SNE in 2011.

In terms of the direct measure of down-regulation, mean stereological estimates of the relative intensity of combined atresia (α and β) were generally low, $\mathrm{A}_{c}<5 \%$, for the majority of individuals; although some fish did have levels exceeding 10% (Fig. 7a). There was no apparent trend in $\% \mathrm{~A}_{\mathrm{c}}$ across the range of $\mathrm{OD}_{\mathrm{LC}}$'s sampled (slope $=-0.002, n=164, r^{2}<0.01, p=0.84$). Looking separately at the two atresia types, β atresia was consistently $1-2 \%$ higher than α atresia, but neither measure was significantly related to mean $\mathrm{OD}_{\mathrm{LC}}\left(\% \mathrm{~A}_{\alpha}:\right.$: slope $=-0.003, n=164, r^{2}<$ $0.01, p=0.47 ; \%_{\beta}:$ slope $\left.=0.001, n=164, r^{2}<0.01, p=0.88\right)$. Some fish with low condition did exhibit high $\% \mathrm{~A}_{\mathrm{c}}$ and most of those with high condition exhibited low $\% \mathrm{~A}_{\mathrm{c}}$ (Fig. 7b). The quantity of atresia was highly variable across the range of observed conditions resulting in a
weak relationship; however, the negative slope of the regression was significant (slope $=-$ 15.563, $\left.n=164, r^{2}=0.06, p<0.01\right)$.

At a stock level, the direct measures of the individual intensity of atresia varied within and among the stocks. The SNE fish had the lowest $\% \mathrm{~A}_{\mathrm{c}}$ of all the stocks, generally $<3 \%$; whereas GOM females had a broader interquartile range ($0-5 \% \mathrm{~A}_{\mathrm{c}}$; Fig. 8). The more limited samples of fish from GB had the highest individual atresia levels and exceeded $5 \% \mathrm{~A}_{\mathrm{c}}$ more frequently than the other stocks. Interannual differences were limited, but $\% \mathrm{~A}_{\mathrm{c}}$ was generally very low in 2010 for fish from all 3 stocks, especially relative to fish sampled in 2011. However, the proportion A_{c} was not significantly different among years for yellowtail flounder from GOM and SNE $(F=1.835, n=120, p=0.11)$.

The theoretical model for down-regulation with a relatively constant atretic rate produced a PDF that was similar to but not entirely consistent with the observed PDF (Fig. 9). Single acute and episodic patterns of atresia were multimodal with little similarity to the observed PDF. A variable pattern with periods of low steady and brief higher intensity atresia produced a PDF more similar to that of the observed data.

4.0 Discussion

4.1 Size- and age-dependent fecundity

Yellowtail flounder size (length) was the best predictor of PAF, and PAF increased with both increasing length and age. We chose length as a metric of size rather than fish mass because even gonad-free fish mass changes in relation to length seasonally due to storage and or depletion of energy reserves (Skjæraasen et al., 2006; Alonso-Fernández et al., 2009; McElroy et
al., 2013). Samples were representative of the lengths and ages occurring in the commercial catch presently, but may not precisely reflect their relative abundance (NEFSC, 2012a, 2012b; Legault et al., 2013). Age was a weaker predictor than length, which may be partially attributed to the observed differences in size at age among years and stocks. This was particularly true for the GOM fish, which grow slower than SNE fish (NEFSC 2012a). Howell and Kesler (1977) also reported that length was more predictive of fecundity than age for yellowtail flounder.

The positive allometry $\left(\beta_{l}>3\right)$ in the relationship between fecundity and size indicates greater egg production by large females than expected based on their size alone. Earlier yellowtail fecundity studies by Pitt (1971) and Howell and Kesler (1977) included larger fish up to 54 cm TL and reported higher slopes than the current study ($\beta=4.69$ and 3.86 , respectively). Because U.S. stocks of yellowtail flounder have experienced truncated size and age structure for a decade or more (NEFSC, 2012a, 2012b; Legault et al., 2013), it is likely they are capable of higher fecundity at size than reported here as few fish sampled were larger than 45 cm . The increased relative fecundity for larger females, as shown in other species (Wootton, 1990), indicates that both SSB and stock demographics determine stock reproductive potential. Additional data from larger fish would help quantify the value of these larger fish to overall stock productivity.

We only examined patterns in potential fecundity and were not able to assess realized fecundity or variation in egg size or quality. Greater egg size, which generally confers higher survival to larvae, has been related to maternal size or age in some species including: Atlantic cod, Gadus morhua (Kjesbu et al., 1996), haddock, Melanogrammus aeglefinus (Trippel and Neil, 2004), plaice, Pleuronectes platessus (Kennedy et al., 2007) and winter flounder, Pseudopleuronectes americanus (Buckley et al., 1991). Experimental studies on maternal effects
in yellowtail flounder are equivocal; Manning and Crim (1998) found no relationship between egg size and egg dry weight with maternal size, while Benoît and Pepin (1999) report strong maternal effects on larval hatch size, but the sample sizes were small in both studies. Further research is necessary to understand maternal effects for yellowtail flounder; as both fecundity and the size and quality of propagules contribute to reproductive potential.

4.2 Between stock variation in fecundity

Our study applied a single method across the stocks and demonstrated both between and within stock variation of yellowtail flounder fecundity in U.S. waters. Model estimates of PAF were higher for SNE females, relative to GOM fish, within all years. Although only 200 km separates these collection areas, they are bisected by Cape Cod, which demarcates a major zoogeographic boundary (Briggs, 1974). Our sampling covered much of the current high abundance areas of the yellowtail population in U.S. waters (NEFSC, 2012a, 2012b; Legault et al., 2013), and likely captured much of the variation in fecundity that presently exists in U.S. waters. However, we did not sample yellowtail flounder farther south, along the middle Atlantic bight, a region where their abundance has declined recently.

Spatial variation in fish fecundity is common in other groundfishes (Blanchard et al., 2003; Cooper et al., 2007; Witthames et al., 2013). In the sympatric winter flounder, Pseudopleuronectes americanus, fecundity was also lower for individuals from the GOM compared to the SNE stock, with comparable spatial scale in sampling (McElroy et al., 2013). Populations in these two regions, for both flounder species, are considered separate stocks. In the case of winter flounder, several phenotypic traits, including growth which influences fecundity, are consistent with genetic differentiation between SNE and GOM (DeCelles and Cadrin, 2011;

Wirgin et al., 2014); however, genetic studies have provided inconclusive evidence for yelllowtail flounder stock structure (Cadrin, 2010). Genetic structuring may be reduced for yellowtail flounder due to greater dispersal and mixing of pelagic eggs as compared to the benthic winter flounder egg. Spatial variation in yellowtail flounder fecundity has been identified in Canadian waters (Rideout and Morgan, 2007), but interstock variation in yellowtail flounder fecundity within U.S. waters had not been previously described.

There may be stock-specific differences between the coastal stocks (SNE, GOM) and the transboundary offshore stock (GB) as well; spawning stock biomass at age is known to vary by stock for yellowtail flounder in the US due to differences in maturity and weight at age (NEFSC, 2012a, 2012b; Legault et al., 2013). However, sample size of the GB stock was too low and the variability of the estimates was high, which prevented us from including them in the present comparative analyses. Qualitatively, estimates of PAF for females from GB were more aligned with the lower fecundity evident in GOM than with SNE individuals, and this was consistent with low levels of K_{n} and higher levels of $\% \mathrm{~A}_{\mathrm{c}}$ observed for GB females, in the years studied. It is possible that the low somatic condition of this stock in recent years (Legault et al., 2013), particularly in 2011, has contributed to more variable and lower fecundity. Further sampling of this stock is necessary understand its reproductive dynamics, the importance of which is magnified by the current low abundance of the stock and record low recruitment (Legault et al., 2013).

Our fecundity at length estimates are higher than previous reports for yellowtail flounder in the northwestern Atlantic Ocean (Table 5), particularly for SNE individuals (Howell and Kesler, 1977). Pitt (1971) in the 1960's, and more recently Rideout and Morgan (2007) reported lower yellowtail PAF for Grand Bank yellowtail than observed in U.S. waters. This later study
also found lower fecundity for females on the eastern side (3LNO NAFO region) of the Grand Bank than the western portion (3Ps). At a greater spatial scale than just the present study, fecundity in the GOM is intermediate between that for Grand Bank and SNE, further supporting a latitudinal trend. Evidence for this latitudinal trend in yellowtail flounder fecundity was first identified by Howell and Kesler (1977), who compared their estimates for SNE to reported fecundity from the Grand Bank (Pitt, 1971). Cross study comparisons in fecundity are complicated by temporal separation differences in methodology, and the lack of a common minimum oocyte size-threshold. The earlier studies covered a similar overall oocyte diameter range to the present work, but those studies may have included more fish with low mean oocyte diameters and so lower cumulative down-regulation, resulting in higher estimates of fecundity at length. However, results within the current study and collectively with earlier work and the multiple Grand Bank studies provide support for decreasing fecundity with increasing latitude as has been demonstrated in other species and regions (e.g. Thorsen et al., 2010).

4.3 Within stock variation in fecundity

Interannual differences in fecundity were evident in both coastal stocks and were synchronous in two of the three years sampled, 2010 (both higher) and 2012 (both lower). Similarly, down-regulation was highest in 2011 for both the GOM and SNE stocks. Interannual variations in fecundity has frequently been related to environmental conditions, feeding, or both (Horwood et al., 1989; Skjæraasen et al., 2006; Kjesbu and Witthames, 2007; Morgan et al., 2010), therefore synchrony across stocks in certain years may indicate larger scale (regional) forcing of environmental conditions. However, PAF was not synchronized among regions in all years (i.e. 2011). On the Grand Bank, Rideout and Morgan (2007) also reported interannual
variation in fecundity at length between years in the 1990s and even greater differences with estimates from the 1960's (Pitt, 1971). Our estimates of fecundity at length for SNE individuals are higher than earlier studies (Table 5). Continued sampling over a longer timescale is necessary to fully characterize the level of PAF synchronization among the yellowtail flounder stocks, temporal dynamics, and assess linkages to potential driving factors.

Within-stock spatial variation in reproductive output of yellowtail flounder may also exist but was not investigated here. Intrapopulation differences have been observed within Grand Bank yellowtail flounder (Rideout and Morgan, 2007; Morgan and Rideout, 2008) as well as other flatfish (Rijnsdorp, 1991; Kennedy et al., 2007), but not in all cases where it has been examined (Nichol and Acuna, 2001; Kennedy et al., 2009). Spatial heterogeneity in condition has been identified in yellowtail flounder on Georges Bank (Pereira et al., 2012); therefore based on the present results it is expected that fecundity will covary among Georges Bank habitats with condition. The Gulf of Maine and the southern New England/mid-Atlantic bight are not completely homogeneous in environmental conditions, which could result in differing egg production within these stock regions, especially given the high individual variability in PAF and K_{n} observed for the samples here.

4.4 Magnitude and timing of down-regulation

Environmental factors that affect consumption, growth, and condition are likely important for both understanding and prediction of PAF (Lambert et al., 2003; Wright, 2013). Although PAF estimates covary with K_{n}, whether K_{n} determines PAF, or if they both are affected by a common cause (e.g. seasonal energy intake) remains uncertain. Nevertheless, K_{n} at the time of sampling, did account for some of the variation among years and stocks in fecundity
and levels of down-regulation. The highest down-regulation (as a percentage of PAF) in GOM fish was observed in 2011, coincident with the lowest observed K_{n}. However these were not always coincident; for example, K_{n} in 2011 for SNE fish was the highest observed, but downregulation was also high. High fecundity was only weakly correlated with condition, as individual variation was substantial and condition also declined with increasing $\mathrm{OD}_{\mathrm{LC}}$. The regression estimates of down-regulation among years did not completely mirror the direct measures of atresia $\left(\% \mathrm{~A}_{\mathrm{c}}\right)$. Equivocal association between fecundity, K_{n}, and down-regulation is partially attributable to the fact that the variables measured here $\left(\mathrm{K}_{\mathrm{n}}, \% \mathrm{~A}_{\mathrm{c}}\right.$, overall stock-wide down-regulation) are point estimates of continuous processes and do not account for periods of low condition or high down-regulation that may have occurred during other portions of the year. Feeding and condition much earlier in the seasonal cycle, e.g. at the start of vitellogenesis, may have greater impact on fecundity than condition just prior to spawning (Skjæraasen et al., 2006). Likely a combination of condition, size at length (growth), and environmental factors throughout the year contribute to PAF variation. Results here for yellowtail flounder indicate some adjustment of fecundity during the months just prior to spawning, with fecundity downregulation related to very low relative condition during late vitellogenesis.

The timing of sampling can have consequences for fecundity estimation, and typically researchers attempt to sample as close to, but prior to, spawning to avoid overestimating fecundity (Murua et al., 2003; Ganias et al., 2014). The two thresholds related to oocyte diameter measures employed here ensured that individuals had a distinct size hiatus in the distribution of oocytes and that clutches were well developed. The yolked clutch exhibited variable size distributions among individuals, and the use of a second threshold further excluded fish with oocytes still in early development. Down-regulation of fecundity that occurred early in clutch
development was not accounted for applying these thresholds, and our estimates of downregulation may underestimate total down-regulation of the clutch from initiation to maturation. Regardless, this approach assures our estimates of PAF are closer to the realized annual fecundity. Furthermore, inclusion of $\mathrm{OD}_{\mathrm{LC}}$ in the final fecundity model accounted for downregulation and individual variation in the stage of clutch development.

The stereological method applied in the current study is model based (requiring assumptions related to particle shape) and can introduce bias when attempting to obtain absolute counts, such as fecundity estimation, due to non-uniform shrinkage or distortion of the reference section (Kjesbu et al., 2010; Ganias et al., 2014). Unbiased methods (e.g. the dissector method) exist, but require multiple sequential histology sections which were not available. However, some of the assumptions and potential biases in the particle count approaches are avoided when relative intensities are estimated (Kjesbu et al. 2010), as was done here. Quantification and exclusion of negative sample area (empty space) from the calculations also reduced some of the bias related to distortion of sections. Another complication is that the size and shape of the cell types varies. We found the coefficients K and β differed among cell types, as also reported for bluefin tuna, Thunnus thynnus (Medina et al., 2002; Aragón et al., 2010), and used cell specific parameters derived herein (see methods) to account for shape differences. Although, some bias likely remains in this approach, the stereological estimates here provide useful relative measures of atresia levels for comparison to our whole mount fecundity and down-regulation analyses.

The two down-regulation approaches (the indirect fecundity model based and direct stereological estimates) provided independent measures to aid interpretation of the timing and processes involved in down-regulation. The image filtering employed in the fecundity processing excluded less-opaque and irregularly shaped atretic oocytes; thus many of the down-regulated
(atretic) oocytes were not included in fecundity estimates. The direct stereological approach provides individual-level estimates of atresia, $\% \mathrm{~A}_{\mathrm{c}}$ from $0-34 \%$ but typically $<5 \%$, that include more atresia than that inferred from fecundity samples that likely excluded all β atresia and some α-atretic oocytes. The low atresia rates reported here are consistent with those reported for yellow tail flounder by Zamarro (1991) on the Grand Bank (<0.001\%) and Howell (1983) in SNE (0.4-1.8\%). Howell (1983) used straight counts from histology, and the author acknowledged this would underestimate the abundance of the smaller atretic oocytes relative to the larger vitellogenic cells. Although general individual levels identified here were low for most fish; some individual fish had high intensities of atresia.

The rate of degeneration of atretic oocytes relative to $\mathrm{OD}_{\mathrm{LC}}$ is unknown for yellowtail flounder, which precludes the simple expansion of atretic rates to estimate total atresia during the entire development period of the annual cohort. Estimates for persistence of α atresia for other species vary from 5-10 days (summarized by Witthames et al., 2010), although some α particles persisted 150 days (though these were considered cysts). Though the duration β atretic particles is uncertain, given the lower frequency observed (as compared to alpha) they are presumably less persistent. Assuming similarly brief existence of atretic particles in yellowtail, any point estimates represent a fraction of the total atresia during the period investigated. The point estimates of atresia presented here potentially arise from different patterns of atresia. Individuals probably also vary in their down-regulation pattern in response to certain internal or external factors, which would contribute to the observed fecundity distribution. The theoretical patterns for both the low steady and variable down-regulation patterns were parameterized using the stereological estimates of atresia for yellowtail flounder and resulted in the PDF's closest to the observed data. This suggests for the majority of fish there are low levels of atresia throughout the
late development of the clutch. However, a few fish were observed to have high rates of atresia. If environmental or feeding conditions sufficient to cause substantial down-regulation do occur at a regional scale, the mechanism for large-scale, stock-level decreases in egg production appears to exist. In 2011, high down-regulation during the sampling period was observed in both inshore stocks.

The estimated within stock atresia rates, roughly 3-25\% reduction in PAF observed for yellowtail flounder, were similar or below estimates for other species. Decreases in potential fecundity of 45\% have been reported for Greenland halibut, Reinhardtius hippoglossoides (Kennedy et al., 2009), 27-30\% in Atlantic cod, Gadus morhua (Witthames et al., 2013), and 20$71 \%$ in Atlantic herring, Clupea harengus (Kurita et al., 2003; van Damme et al., 2009; Bucholtz et al., 2013). Down-regulation may also occur at earlier stages of oogenesis than examined here; as in some species where it has been found to be lower just prior to spawning and higher during an earlier 'atretic' window (Kurita et al., 2003; Kennedy et al., 2009). Down-regulation of yellowtail flounder was found to occur throughout late vitellogenesis. Additional but earlier down-regulation may explain the weak relationship between predicted PAF residuals and $\% \mathrm{~A}_{c}$. Many fish with negative PAF residuals did not exhibit high levels of atresia; therefore the lower fecundity may be the result of some earlier down-regulation or of the initial clutch size. Howell (1983) found vitellogenic atresia from November to May with the greatest intensities in January and February, whereas none was observed June through October (a period of early development). In the present study annual down-regulation rates and interannual variation in PAF were not always correlated and this may indicate that final fecundity is a combination of processes occurring both early and late in development. For this species, results herein and from previous work suggest PAF can be adjusted over a broad oocyte development period, and there
may be plasticity in the seasonal timing and magnitude of fecundity regulation. The stock differences also indicate the flexible nature of fecundity regulation, and that down-regulation and final fecundity may be the result of local environmental and feeding conditions.

5.0 Conclusions

Yellowtail flounder fecundity was found to vary temporally and spatially, and was inversely related to latitude. Stock-level fluctuations in condition and down-regulation suggest environmental influences on development of the annual batch of eggs prior to spawning. Though variable at both individual and stock levels, down-regulation was evident, underscoring the need to account for the progression of clutch development in fecundity models. Fish size and relative condition influence fecundity in this species, underscoring the importance of tracking temporal and spatial growth variability in the stock assessment models. Future studies should explore environmental drivers of size and condition to model variation in reproductive potential. However, changes in egg production due to population size structure and relative condition alone cannot fully explain the poor recruitment of yellowtail flounder in recent years. It is probable that egg production in concert with other factors affecting egg, larval, and juvenile stages (e.g. climate driven regulation of juvenile production; Sullivan et al., 2005), act synergistically to contribute to recruitment variability.

Acknowledgements

We thank the organizers of the International Flatfish Symposium, editors of this symposium special issue, and anonymous reviewers for their constructive suggestions. This study was funded by the National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries

Science Center (NEFSC), Northeast Cooperative Research Program (NCRP). We thank NCRP's Study Fleet staff and participating fishermen, Ecosystems Surveys Branch of the NOAA Fisheries Northeast Fisheries Science Center and the officers and crew of the NOAA research vessel H. B. Bigelow, and the Massachusetts Division of Marine Fisheries (MADMF) for assistance securing biological samples utilized in this study. We thank all the staff members of these various programs and in particular: J. Hoey (NEFSC-NCRP), J. Moser, M. Ball, and D. St. Amand (NEFSC-Study Fleet), J. King (MADMF). Y. Press and J. Dayton assisted early sampling and protocol development, and S. Emery aged all samples. L. O'Brien and C. Legault provided valuable suggestions on an earlier version of the text and analyses. We also thank Mass Histology Service Inc. for histological processing.

References

Alonso-Fernández, A., Vallejo, A.C., Saborido-Rey, F., Murua, H., Trippel, E.A., 2009. Fecundity estimation of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) of Georges Bank: Application of the autodiametric method. Fish. Res. 99, 47-54.

Andersen, T.E., 2003. Unbiased stereological estimation of cell numbers and volume fractions: the director and the principles of point counting, in: Kjesbu, O. S., Hunter, J. R., Witthames, P. R. (Eds.), Report of the Working Group on Modern Approaches to Assess Maturity and Fecundity of Warm- and Cold-water Fish and Squids. Havforskningsinstituttet, Bergen, Norway, pp. 8-18.

Anderson, D.R., 2008. Model based inference in the life sciences: a primer on evidence. New York, NY, Springer Science \& Business Media LLC.

Aragón, L., Aranda, G., Santos, A., Medina, A, 2010. Quantification of ovarian follicles in bluefin tuna Thunnus thynnus by two stereological methods. J. Fish Biol. 77, 719-730.

Benoît, H.P., Pepin, P., 1999. Interaction of rearing temperature and maternal influence on egg development rates and larval size at hatch in yellowtail flounder (Pleuronectes ferrugineus). Can. J. Fish. Aquat. Sci. 56, 785-794.

Blanchard, J.L., Frank, K.T., Simon, J.E., 2003. Effects of condition on fecundity and total egg production of eastern Scotian Shelf haddock (Melanogrammus aeglefinus). Can. J. Fish. Aquat.

Sci. 60, 321-332.

Briggs, J.C., 1974. Marine Zoogeography. McGraw-Hill Book Co., New York.
Brooks, E.N., 2013. Effects of variable reproductive potential on reference points for fisheries management. Fish. Res. 138, 152-158.

Bucholtz, R.H., Tomkiewicz, J., Nyengaard, J.R., Andersen, J.B., 2013. Oogenesis, fecundity and condition of Baltic herring (Clupea harengus L.): A stereological study. Fish. Res. 145, 100113.

Buckley, L.J., Smigielski, A.S., Halavik, T.A., Caldarone, E.M., Burns, B.R., Laurence, G.C., 1991. Winter flounder, Pseudopleuronectes americanus, reproductive success. II. Effects of spawning time and female size on size, composition and viability of eggs and larvae. Mar. Ecol. Prog. Ser. 74, 125-135.

Cadrin, S.X., 2010. Interdisciplinary analysis of yellowtail flounder stock structure off New England. Rev. Fish. Sci. 18, 281-299.

Cooper, D.W., Maslenikov, K.P., Gunderson, D.R., 2007. Natural mortality rate, annual fecundity, and maturity at length for Greenland halibut (Reinhardtius hippoglossoides) from the northeastern Pacific Ocean. Fish. Bull. 105, 296-304.

DeCelles, G.R., Cadrin, S.X., 2011. An interdisciplinary assessment of winter flounder (Pseudopleuronectes americanus) stock structure. J. Northw. Atl. Fish. Sci. 43, 103-120.

Emerson, L.S., Greer Walker, M., Witthames, P.R., 1990. A stereological method for estimating fish fecundity. J. Fish Biol. 36, 721-730.

Fitzhugh, G.R., Shertzer, K.W., Kellison, G.T., Wyanski, D.M., 2012. Review of size- and agedependence in batch spawning: implications for stock assessment of fish species exhibiting indeterminate fecundity. Fish. Bull. 110, 413-425.

Ganias K., Murua H., Claramunt G., Dominguez-Petit R., Gonçalves P., Juanes F., Keneddy J., Klibansky N., Korta M., Kurita Y., Lowerre-Barbieri S., Macchi G., Matsuyama M., Medina A., Nunes C., Plaza G., Rideout R., Somarakis S., Thorsen A., Uriarte A., Yoneda M. 2014. Chapter 4: Egg production, 109 pp. In Handbook of applied fisheries reproductive biology for stock assessment and management, ed. R. Domínguez-Petit, H. Murua, F. Saborido-Rey and E. Trippel. Vigo, Spain. Digital CSIC. http://hdl.handle.net/10261/87768.

Horwood, J.W., Walker, M.G., Witthames, P., 1989. The effect of feeding levels on the fecundity of plaice (Pleuronectes platessa). J. Mar. Biol. Assoc. U. K. 69, 81-92.

Howell, W.H., 1983. Seasonal changes in the ovaries of adult yellowtail flounder, Limanda ferruginea. Fish. Bull. 81, 341-355.

Howell, W.H., Kesler, D.H., 1977. Fecundity of the southern New England stock of yellowtail flounder, Limanda ferruginea. Fish. Bull. 75, 877-880.

Hunter, J.R., Macewicz, B.J., 1985. Rates of atresia in the ovary of captive and wild northern anchovy, Engraulis mordax. Fish. Bull. 83, 119-136.

Kennedy, J., Geffen, A.J., Nash, R.D.M., 2007. Maternal influences on egg and larval characteristics of plaice (Pleuronectes platessa L.). J. Sea Res. 58, 65-77.

Kennedy, J., Gundersen, A.C., Boje, J., 2009. When to count your eggs: Is fecundity in Greenland halibut (Reinhardtius hippoglossoides W.) down-regulated? Fish. Res. 100, 260-265.

Kjesbu, O.S., Fonn, M., Gonzáles, B.D., Nilsen, T., 2010. Stereological calibration of the profile method to quickly estimate atresia levels in fish. Fish. Res. 104, 8-18.

Kjesbu, O.S., Solemdal, P., Bratland, P., Fonn, M., 1996. Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 53, 610-620.

Kjesbu, O.S., Witthames, P.R., 2007. Evolutionary pressure on reproductive strategies in flatfish and groundfish: Relevant concepts and methodological advancements. J. Sea Res. 58, 23-34.

Kurita, Y., Meier, S., Kjesbu, O.S., 2003. Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203-219.

Lambert, Y., 2013. Long-term changes in life history characteristics and reproductive potential of northern Gulf of St. Lawrence cod (Gadus morhua) and consequences for the stock productivity. Fish. Res. 138, 5-13.

Lambert, Y., Yaragina, N.A., Kraus, G., Marteinsdóttir, G., Wright, P.J., 2003. Using environmental and biological indices as proxies for egg and larval production of marine fish. J. Northw. Atl. Fish. Sci. 33, 115-159.

Le Cren, E.D., 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20, 201-219.

Legault, C.M., Alade, L., Gross, W.E., and Stone, H.H. 2013. Stock Assessment of Georges Bank Yellowtail Flounder for 2013. TRAC (Transboundary Resources Assessment Committee) Ref. Doc. 2013/01. http://www.bio.gc.ca/info/intercol/trac-cert/publications-eng.php.

Lowerre-Barbieri, S.K., Brown-Peterson, N.J., Murua, H., Tomkiewicz, J., Wyanski, D.M., Saborido-Rey, F., 2011. Emerging issues and methodological advances in fisheries reproductive biology. Mar. Coast. Fish. 3, 32-51.

Manning, A.J. Crim, L.W., 1998. Maternal and interannual comparison of the ovulatory periodicity, egg production and egg quality of the batch-spawning yellowtail flounder. J. Fish

Biol. 53, 954-972.

Marshall, C.T., O'Brien, L., Tomkiewicz, J., Koster, F.W., Kraus, G., Marteinsdottir, G., et al., 2003. Developing alternative indices of reproductive potential for use in fisheries management: case studies for stocks spanning an information gradient. J. Northwest Atl. Fish. Sci. 33, 161190.

Marteinsdottir, G., Thorarinsson, K., 1998. Improving the stock-recruitment relationship in Icelandic cod (Gadus morhua L.) by including age diversity of spawners. Can. J. Fish. Aquat. Sci. 55, 1372-1377.

McElroy, W.D., Wuenschel, M.J., Press, Y.K., Towle, E.K., McBride, R.S., 2013. Differences in female individual reproductive potential among three stocks of winter flounder, Pseudopleuronectes americanus. J. Sea Res. 75, 52-61.

Medina, A., Abascal, F.J., Megina, C., García, A., 2002. Stereological assessment of the reproductive status of female Atlantic northern bluefin tuna during migration to Mediterranean spawning grounds through the Strait of Gibraltar. J. Fish Biol. 60, 203-217.

Morgan, M.J., 2008. Integrating reproductive biology into scientific advice for fisheries management. J. Northwest Atl. Fish. Sci. 41, 37-51.

Morgan, J.M., Murua, H., Kraus, G., Lambert, Y., Marteinsdótter, G., Marshall, C.T., O'Brien, L., Tomkiewicz, J., 2009. The evaluation of reference points and stock productivity in the context of alternative indices of stock reproductive potential. Can. J. Fish. Aquat. Sci. 66, 404414.

Morgan, M.J., Perez-Rodriguez, A., Saborido-Rey, F., 2011. Does increased information about reproductive potential result in better prediction of recruitment? Can. J. Fish. Aquat. Sci. 68, 1361-1368.

Morgan, M.J., Rideout, R.M., 2008. The impact of intrapopulation variability in reproductive traits on population reproductive potential of Grand Bank American plaice (Hippoglossoides platessoides) and yellowtail flounder (Limanda ferruginea). J. Sea Res. 59, 186-197.

Morgan, M.J., Rideout, R.M., Colbourne, E.B., 2010. Impact of environmental temperature on Atlantic cod, Gadus morhua, energy allocation to growth, condition and reproduction. Mar. Ecol. Prog. Ser. 404, 185-195.

Murua, H., Kraus, G., Saborido-Rey, F., Witthames, P., Thorsen, A., Junquera, S., 2003. Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. J. Northwest Atl. Fish. Sci. 33, 33-54.

NEFSC (Northeast Fisheries Science Center), 2012a. 54th Northeast Regional Stock Assessment Workshop (54th SAW) Assessment Report. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 12-18

NEFSC (Northeast Fisheries Science Center), 2012b. Assessment or Data Updates of 13 Northeast Groundfish Stocks through 2010. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 12-06.

Nichol, D.G., Acuna, E.I., 2001. Annual and batch fecundities of yellowfin sole, Limanda aspera, in the eastern Bering Sea. Fish. Bull. 99, 108-122.

Penttila, J., Dery, L.M. (Eds.), 1988. Age determination methods for Northwest Atlantic species. NOAA Tech. Rep. NOAA-TR-NMFS-72, Northeast Fisheries Science Center, Woods Hole, MA (USA).

Pereira, J., Schultz, E.T., Auster, P.J., 2012. Geospatial analysis of habitat use in yellowtail flounder Limanda ferruginea on Georges Bank. Mar. Ecol. Prog. Ser. 468, 279-290.

Pitt, T.K., 1971. Fecundity of the yellowtail flounder (Limanda ferruginea) from the Grand Bank, Newfoundland. J. Fish. Res. Board Can. 28, 456-457.

R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rideout, R.M., Morgan, M.J., 2007. Major changes in fecundity and the effect on population egg production for three species of north-west Atlantic flatfishes. J. Fish Biol. 70, 1759-1779.

Rideout, R.M., Morgan, M.J., 2010. Relationships between maternal body size, condition and potential fecundity of four north-west Atlantic demersal fishes. J. Fish Biol. 76, 1379-1395.

Rijnsdorp, A. D., 1991. Changes in fecundity of female North Sea plaice (Pleuronectes platessa L.) between three periods since 1900. ICES J. Mar. Sci. 48, 253-280.

Saborido-Rey, F., Trippel, E.A., 2013. Fish reproduction and fisheries. Fish. Res. 138, 1-4.
Skjæraasen, J. E., Nilsen, T., Kjesbu, O.S., 2006. Timing and determination of potential fecundity in Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 63, 310-320.

Stares, J.C., Rideout, R.M., Morgan, M.J., Brattey, J., 2007. Did population collapse influence individual fecundity of northwest Atlantic cod? ICES J. Mar. Sci. 64, 1338-1347.

Sterio, D.C., 1984. The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134, 127-136.

Sullivan, M.C., Cowen, R.K., Steves, B.P., 2005. Evidence for atmosphere-ocean forcing of yellowtail flounder (Limanda ferruginea) recruitment in the Middle Atlantic Bight. Fish. Oceanogr. 14, 386-399.

Thorsen, A., Kjesbu, O.S., 2001. A rapid method for estimation of oocyte size and potential
fecundity in Atlantic cod using a computer-aided particle analysis system. J. Sea Res. 46, 295308.

Thorsen, A., Witthames, P.R., Marteinsdóttir, G., Nash, R.D.M., Kjesbu, O.S., 2010. Fecundity and growth of Atlantic cod (Gadus morhua L.) along a latitudinal gradient. Fish. Res. 104, 4555.

Tomkiewicz, J., Morgan, M.J., Burnett, J., Saborido-Rey, F., 2003. Available information for estimating reproductive potential of northwest Atlantic groundfish stocks. J. Northwest Atl. Fish. Sci. 33, 1-21.

Trippel, E.A., 1999. Estimation of stock reproductive potential: History and challenges for Canadian Atlantic gadoid stock assessments. J. Northwest Atl. Fish. Sci. 25, 61-81.

Trippel, E.A., Neil, S.R.E., 2004. Maternal and seasonal differences in egg sizes and spawning activity of northwest Atlantic haddock (Melanogrammus aeglefinus) in relation to body size and condition. Can. J. Fish. Aquat. Sci. 61, 2097-2110.
van Damme, C.J.G., Dickey-Collas, M., Rijnsdorp, A.D., Kjesbu, O.S., 2009. Fecundity, atresia, and spawning strategies of Atlantic herring (Clupea harengus). Can. J. Fish. Aquat. Sci. 66, 2130-2141.

Weibel, E.R., 1979. Stereological methods. Vol. 1. Practical methods for biological morphometry. Academic Press, London.

Weibel, E.R., Gomez, D.M., 1962. A principle for counting tissue structures on random sections. J. Appl. Physiol. 17, 343-348.

Weibel, E.R., Kistler, G.S., Scherle, W.F., 1966. Practical stereological methods for morphometric cytology. J. Cell Biol. 30, 23-38.

Wirgin, I., Maceda, L., Grunwald, C., Roy, N.K., Waldman, J.R., 2014. Coastwide stock structure of winter flounder using nuclear DNA analyses. Trans. Am. Fish. Soc. 143, 240-251.

Witthames, P.R., Armstrong, M., Thorsen, A., Solemdal, P., Kjesbu, O.S., 2013. Contrasting development and delivery of realised fecundity in Atlantic cod (Gadus morhua) stocks from cold and warm waters. Fish. Res. 138, 128-138.

Witthames, P.R., Greenwood, L.N., Thorsen, A., Dominguez, R., Murua, H., Korta, M., Saborido-Rey, F., Kjesbu, O.S., 2009. Advances in methods for determining fecundity: application of the new methods to some marine fishes. Fish. Bull. 107, 148-164.

Witthames, P.R., Greer Walker, M., 1995. Determination of fecundity and oocyte atresia in sole (Solea solea) (Pisces) from the Channel, the North Sea and the Irish Sea. Aquat. Living Resour. 8, 91-109.

Witthames, P.R., Thorsen, A., Kjesbu, O.S., 2010. The fate of vitellogenic follicles in experimentally monitored Atlantic cod Gadus Morhua (L.): Application to stock assessment. Fish. Res. 104, 27-37.

Wootton, R.J., 1990. Ecology of Teleost Fishes. Chapman \& Hall, London.
Wright, P.J., 2013. Methodological challenges to examining the causes of variation in stock reproductive potential. Fish. Res. 138, 14-22.

Zamarro, J., 1991. Batch fecundity and spawning frequency of yellowtail flounder (Limanda ferruginea) on the Grand Bank. Northwest Atl. Fish. Organ. Sci. Counc. Stud. 15, 43-51.

Table 1. Summary statistics for yellowtail flounder used to estimate potential annual fecundity by stock area (Gulf of Maine [GOM], Georges Bank [GB], Southern New England [SNE]) and spawning ${ }^{\text {a }}$ year (means listed with ranges in parentheses).

		GOM	GB	SNE
\boldsymbol{n}	2010	62	14	59
	2011	64	18	48
	2012	88	18	39
	Total	214	50	146

| Total Length (mm) | 2010 | $381(280-550)$ | $385(352-423)$ | $395(284-465)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 2011 | $362(313-459)$ | $390(340-430)$ | $398(315-465)$ |
| | 2012 | $362(295-450)$ | $389(300-465)$ | $374(295-464)$ |

Fish Age (yr)	2010	$4.2(3-9)$	$4.0(3-5)$	$4.4(2-6)$
	2011	$3.6(2-6)$	$4.2(3-6)$	$4.6(3-7)$
	2012	$4.2(3-7)$	$4.4(3-7)$	$4.2(2-8)$

${ }^{\text {a One fish each from SNE and GOM were captured in December } 2010 \text { and combined with } 2011}$ samples - the year they would have spawned.

Table 2. Models predicting potential annual fecundity were compared for single predictor (a) or multiple predictors (b) using natural log-transformed total length (TL). Additional terms included stock (ST), year (YR), relative condition (K_{n}), and mean oocyte diameter of the leading cohort $\left(\mathrm{OD}_{\mathrm{LC}}\right)$, and a stock-year interaction term ($\mathrm{ST}: \mathrm{YR}$). All potential model combinations for these parameters were tested, but only the best model for each number of terms is shown; where the best models were not distinguishable multiple models are shown for that number of terms.
Models were evaluated based on the number of estimable parameters (K), log-likelihood (LL), the second order Akaike's Information Criterion (AICc), change in the AICc (\triangle AICc), the AICc weight (wt.), and coefficient of determination (r^{2}). Model analysis was conducted on overlapping length ranges for SNE and GOM stocks across years rounded to the nearest cm ($33-46 \mathrm{~cm}$ TL [$n=338]$).

a	K	LL	AICc	Δ AICc	AIC wt.	r^{2}
TL	3	-42.9	91.9	--	0.000	0.62
ST	3	-145.6	297.2	205.3	0.000	0.30
YR	3	-172.4	352.9	261.0	0.000	0.17
$\mathrm{~K}_{\mathrm{n}}$	3	-189.4	384.8	292.9	0.000	0.09
OD $_{\mathrm{LC}}$	3	-204.4	414.8	322.9	0.000	<0.01

b	K	LL	AICc	Δ AICc	AIC wt.	r^{2}
$\mathrm{TL}+\mathrm{ST}+\mathrm{K}_{\mathrm{n}}+\mathrm{OD}_{\mathrm{LC}}+\mathrm{YR}+\mathrm{ST:YR}$	8	70.9	-121.2	--	0.999	0.80
$\mathrm{TL}+\mathrm{ST}+\mathrm{K}_{\mathrm{n}}+\mathrm{OD}_{\mathrm{LC}}+\mathrm{YR}$	7	61.9	-107.4	13.7	0.001	0.79
$\mathrm{TL}+\mathrm{ST}+\mathrm{K}_{\mathrm{n}}+\mathrm{OD}_{\mathrm{LC}}$	6	48.6	-85.0	36.1	0.000	0.78
$\mathrm{TL}+\mathrm{ST}+\mathrm{K}_{\mathrm{n}}+\mathrm{YR}$	6	49.2	-84.0	37.2	0.000	0.78
$\mathrm{TL}+\mathrm{ST}+\mathrm{K}_{\mathrm{n}}$	6	31.6	-53.0	68.1	0.000	0.75
$\mathrm{TL}+\mathrm{K}_{\mathrm{n}}$	5	3.8	0.5	121.7	0.000	0.71
TL	3	-42.9	91.9	213.1	0.000	0.62

Table 3. Regression coefficients for natural log-transformed linear regressions of potential annual fecundity of yellowtail flounder from each stock (by year and all years combined) are relative to either total length (TL) or fish age (FA) with standard errors (in parentheses for the intercept, α and the slopes: $\beta_{1}-\beta_{3}$). Terms for the mean oocyte diameter of the leading cohort $(\mathrm{OD} \mathrm{LC})$ and relative condition $\left(\mathrm{K}_{\mathrm{n}}\right)$ are included. Isometric slopes, $\beta_{l}=3$ for TL and $\beta_{l}=1$ for FA, were evaluated using Wald t-tests. Regressions were determined over full range of FA or TL except rare lengths ($\mathrm{TL}<300 \mathrm{~mm}$ or $\mathrm{TL}>500 \mathrm{~mm}$) and ages $(\mathrm{FA}=2)$ were excluded $(n=10)$.

TL Stock	Year	α	β_{1} (TL)	$\beta_{2}\left(\mathrm{OD}_{\mathrm{LC}}\right)$	$\beta_{3}\left(\mathrm{~K}_{\mathrm{n}}\right)$	r^{2}	n	TL range	$t\left(\beta_{1}=3\right)$	$p\left(\beta_{1}=3\right)$
GOM	2010	-9.0417 (2.3966)	3.7931 (0.4102)	-0.0008 (0.0007)	1.2065 (0.4297)	0.64	59	323-450	1.93	0.06
	2011	-6.6493 (2.2697)	3.5552 (0.3944)	-0.0029 (0.0008)	0.9617 (0.4499)	0.59	62	313-459	1.41	0.16
	2012	-4.5270 (1.8744)	3.0640 (0.3141)	-0.0012 (0.0005)	0.9658 (0.2265)	0.54	87	325-450	0.20	0.84
	All	-9.2454 (1.2558)	3.9049 (0.2128)	-0.0021 (0.0004)	1.2005 (0.2010)	0.64	208	313-459	4.25	< 0.01
GB	All	-6.1022 (4.3530)	3.0610 (0.7013)	-0.0008 (0.0010)	2.3516 (0.5045)	0.42	50	300-465	0.09	0.93
SNE	2010	-8.2958 (2.1794)	3.6184 (0.3434)	-0.0003 (0.0006)	1.3492 (0.3957)	0.69	57	337-465	1.80	0.08
	2011	-6.4841 (1.8246)	3.5334 (0.2999)	-0.0014 (0.0007)	0.5998 (0.2582)	0.76	48	315-465	1.78	0.08
	2012	-8.6858 (1.8052)	3.7297 (0.2776)	-0.0012 (0.0006)	1.4245 (0.3570)	0.86	37	327-464	2.64	0.01
	All	-8.2747 (1.1116)	3.7262 (0.1754)	-0.0011 (0.0004)	1.0475 (0.1891)	0.77	142	315-465	4.14	< 0.01

FA Stock	Year	α	β_{1} (FA)	$\beta_{2}\left(\mathrm{OD}_{\mathrm{LC}}\right)$	$\beta_{3}\left(\mathrm{~K}_{\mathrm{n}}\right)$	r^{2}	n	FA range	$t\left(\beta_{1}=1\right)$	$p\left(\beta_{1}=1\right)$
GOM	2010	12.5035 (0.8814)	0.3986 (0.2548)	0.0003 (0.0012)	1.1646 (0.6802)	0.11	59	3-6	-2.36	0.02
	2011	12.5715 (0.9602)	0.4022 (0.2341)	-0.0003 (0.0011)	1.0262 (0.6906)	0.07	60	3-6	-2.55	0.01
	2012	13.0032 (0.5106)	0.2823 (0.1260)	-0.0001 (0.0007)	0.5587 (0.3414)	0.08	81	3-7	-5.70	< 0.01
	All	12.8163 (0.4479)	0.4232 (0.1180)	-0.0009 (0.0006)	1.0692 (0.3255)	0.11	200	3-7	-4.89	< 0.01
GB	All	11.5782 (0.7591)	0.8187 (0.2386)	-0.0010 (0.0011)	1.8150 (0.5248)	0.35	49	3-7	-0.76	0.45
SNE	2010	12.8173 (0.6341)	0.8780 (0.1054)	0.0002 (0.0007)	0.4230 (0.4885)	0.59	55	3-6	-1.16	0.25
	2011	13.7954 (0.6860)	0.8610 (0.1476)	-0.0014 (0.0011)	0.2173 (0.3890)	0.44	48	3-7	-0.94	0.35
	2012	12.0734 (0.9117)	0.9640 (0.1303)	-0.0016 (0.0010)	1.6122 (0.5857)	0.65	36	3-8	-0.28	0.78
	All	13.0707 (0.4396)	0.9039 (0.0772)	-0.0012 (0.0005)	0.7013 (0.2798)	0.52	139	3-8	-1.24	0.22

Table 4. Estimated cumulative down-regulation of yellowtail flounder fecundity as the mean oocyte diameter for the leading cohort increased from 400 to $500 \mu \mathrm{~m}$. Predicted PAF (pPAF, in millions) at each mean oocyte diameter of the leading cohort (pPAF_{400} and pPAF_{500}) was calculated for a typical total length (400 mm TL) using the regressions for each stock (ST) and year (YR) with the term for relative condition set a 1.0 ('average condition').

ST	YR	pPAF_{400}	pPAF_{500}	\% Change
GOM	2010	2.13	1.96	-7.69
	2011	1.92	1.45	-24.86
	2012	1.62	1.43	-11.68
GB	All	1.55	1.42	-8.06
SNE	2010	2.21	2.14	-3.10
	2011	2.53	2.21	-12.70
	2012	2.22	1.97	-11.15

Table 5. Summary of potential annual fecundity estimates for yellowtail flounder at two common lengths (370 and 420 mm TL) covered by all studies. Fecundity calculated from previous studies using reported regressions for each location. . Estimates for the current study were calculated using mean oocyte diameter of the leading cohort $=500 \mu \mathrm{~m}$ and a relative condition $=1.0$ ('average condition') for each stock and year independently, except all years combined for GB.

			Fecundity (millions)		
Study	Location	Sampling year (s)	n	370 mm	420 mm
Pitt (1971)	Grand Bank	$1966-1967$	51	0.80	1.46
Rideout \& Morgan (2007)	Grand Bank (3LNO)	$1993-1998$	444	0.73	1.06
	Grand Bank (3Ps)	$1993-1998$	102	0.92	1.36
Howell \& Kesler (1977)	SNE	1976	64	1.11	1.80
Current Study	GOM	2010	59	1.46	2.36
	GOM	2011	62	1.10	1.72
	GOM	2012	87	1.13	1.66
	GB	$2010-2012$	50	1.12	1.65
	SNE	2010	57	1.61	2.55
	SNE	2011	48	1.68	2.62
	SNE	2012	37	1.47	2.36

Fig. 1. Capture locations of yellowtail flounder sampled for fecundity during 2010-2012 ($n=$ 410). Solid lines indicate boundaries for the three stocks: Gulf of Maine (GOM), Georges Bank (GB), and Southern New England (SNE). Box on inset map indicates the location of the study region off the U.S. Atlantic coast.

Fig. 2. Photomicrographs of two pre-spawning yellowtail flounder ovaries showing late vitellogenic (LV) and alpha (α) or beta (β) atretic oocytes. Images are overlaid with a Weibel dissector grid showing sampling points at both ends of each thin black line where the structure type was recorded. To ensure the count of each cell type is unbiased, oocytes transecting the top and right (grey) 'allowed' borders (e.g. oocyte A) are counted, and cells transecting the left and bottom (black) 'forbidden' borders (e.g. oocyte B) are not counted. Scale bar in bottom left is $250 \mu \mathrm{~m}$.

Fig. 3. Yellowtail flounder potential annual fecundity (PAF) relative to total length (TL, left column) and fish age (FA, right column) by year and stock (on a log-log scale). GB regression is for all years combined. Lines are predicted PAF at length or age with terms for mean oocyte diameter of the leading cohort $=500 \mu \mathrm{~m}$ and relative condition $=1.0$ ('average condition'). Ages jittered to reduce over-plotting. Rare lengths ($\mathrm{TL}<300 \mathrm{~mm}$ or $\mathrm{TL}>500 \mathrm{~mm}$) and ages $(\mathrm{FA}=2)$ were excluded from regression calculations (circled, $n=10$).

Fig. 4. Potential annual fecundity (PAF) model estimates at age (a) and length (b) for yellowtail flounder sampled in each year from the SNE and GOM stocks. Estimates were calculated from linear regressions determined over a range of total lengths (rounded to nearest $\mathrm{cm}, 33-45 \mathrm{~cm}, n$ $=338$) sampled from both stocks in all years (both age and length are on a log scale). All PAF models shown were calculated with mean oocyte diameter of the leading cohort $=500 \mu \mathrm{~m}$ and for relative condition $=1.0$ ('average condition'). Predicted length at age (c) was plotted for each stock-year combination as determined from the same data subset using least-squares fit linear regression.

Fig. 5. Relative condition (K_{n}) of female yellowtail flounder by stock and year. Differences were evaluated across all but GB which were not included because of low sample size but are shown for comparison. Groups with matching letters were not significantly different from each other (p >0.05; Tukey HSD post-hoc test).

Fig. 6. Length-predicted potential annual fecundity (PAF) residuals relative to condition (a, K_{n}) and mean oocyte diameter of the leading cohort ($\mathrm{b}, \mathrm{OD}_{\mathrm{LC}}$). Predicted PAF values were determined using year-stock specific regressions for GOM and SNE females and for all years combined for GB females. The regressions used for predicting PAF in panel a included a term for $\mathrm{OD}_{\mathrm{LC}}$ (but no K_{n} term) and those in panel b included a term for K_{n} (but no $\mathrm{OD}_{\mathrm{LC}}$ term). Dashed lines are the least-squares fit linear regressions.

Fig. 7. The relative intensity of combined (α and β) atresia ($\% \mathrm{~A}_{c}$) estimated using stereology relative to mean whole-mount oocyte diameter of the leading cohort ($\mathrm{a}, \mathrm{OD}_{\mathrm{LC}}, n=164$). The solid line is the least-squares fit of the linear regression for $\% \mathrm{~A}_{\mathrm{c}}$, and regressions for $\alpha\left(\% \mathrm{~A}_{\alpha}\right)$ and $\beta\left(\% \mathrm{~A}_{\beta}\right)$ atresia were also plotted independently (points not shown). Relationship of $\% \mathrm{~A}_{c}$ relative
to condition ($\mathrm{b}, \mathrm{K}_{\mathrm{n}}$) with a reference line (solid) indicating 'average' condition, and the dashed line the least-squares fit of the linear regression.

Fig. 8. Stereological estimates of the relative intensity of combined (α and $\beta, \% \mathrm{~A}_{c}$) atresia by stock and year. Sample size was 20 fish for each year in GOM and SNE stocks, but for GB were $n=9,17$, and 18 fish in 2010-2012, respectively.

Fig. 9. Left column, declines in relative fecundity as the annual clutch of oocytes develops (relative to the mean oocyte diameter of the leading cohort, $\mathrm{OD}_{\mathrm{LC}}$) for different theoretical patterns of atretic down-regulation. Right column, kernal density functions for the predicted relative fecundity under each modeled atresia rate (scaled to the frequency of observed diameters) and the observed frequency for yellowtail flounder fecundity.

Theoretical Atresia Patterns

Yellowtail flounder potential annual fecundity (PAF) relative to total length (TL, left column) and fish age (FA, right column) by year and stock (on a log-log scale). GB regression is for all years combined. Lines are predicted PAF at length or age with terms for mean oocyte diameter of the leading cohort $=500 \mu \mathrm{~m}$ and relative condition $=1.0$ ('average condition'). Ages jittered to reduce over-plotting. Rare lengths ($\mathrm{TL}<300 \mathrm{~mm}$ or $\mathrm{TL}>500 \mathrm{~mm}$) and ages $(\mathrm{FA}=2$) were excluded from regression calculations (circled, $n=10$).

[^0]: W. David McElroy*12, Mark J. Wuenschel ${ }^{2}$, Emilee K. Towle ${ }^{12}$, and Richard S. McBride ${ }^{2}$
 ${ }^{1}$ Integrated Statistics Inc., 172 Shearwater Way, Falmouth, MA 02540 USA
 ${ }^{2}$ Northeast Fisheries Science Center, National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543 USA
 *Corresponding author:
 Tel.: 00+1+5084952249
 Fax: 00+1+5084952258
 Email: Dave.McElroy@noaa.gov

[^1]: ${ }^{1}$ Mention of this or any other products is for descriptive purposes and does not indicate endorsement by the National Marine Fisheries Service.

[^2]: ${ }^{2}$ Mention of this or any other products is for descriptive purposes and does not indicate endorsement by the National Marine Fisheries Service.

